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Abstract 

 
This paper presents the fundamental characteristics of bistatic altimetry performed using 
the Global Positioning System (GPS) signal scattered off the ocean surface and collected 
by a receiver in space. The advantage of the dense and rapid surface coverage afforded 
by the existing GPS constellation would enable new oceanographic applications such as 
eddy monitoring and the tracking of fast barotropic waves. To exploit the wealth of 
potentially available measurements, the paper provides a first cut at a system required to 
perform such measurements from space. In particular, the choice of pointing direction for 
the receiving antenna is discussed together with the implications in terms of instrument 
footprint and coherence time. The theoretical reflected signal is then derived by extension 
of the cross-correlation process used for direct GPS signals and the characteristics of the 
leading edge are emphasized, to identify analogies and differences with the traditional 
altimetry waveform. In particular, the behavior of the derivative of the leading edge 
suggests a useful algorithm for extracting the mean sea height, wind speed and significant 
wave height. An overall range accuracy rms value is predicted for several antenna gains, 
pointing directions and different geometric scenarios. When averaging many 
measurements, the range error is progressively reduced yielding  predicted  accuracies in 
sea height with associated spatial and temporal resolutions. The effect of wind speed and 
significant wave height on the received signal are discussed by performing simulations 
with a realistic range of these variables.  The range accuracy versus receiving antenna 
gain and scattering direction is discussed and a specific guideline on the gain necessary 
for altimetry from space is provided. Finally, considerations on the possibility to track 
phase at small elevation angles and the resulting improvement in the measurement 
accuracy are presented. 

 
1. Introduction 
 
The Global Positioning System (GPS), which was first conceived and built for the 
purpose of navigation, has been utilized in the last two decades to study the Earth’s 
interior, surface and environment in ways that far exceed anyone’s original imagination.  
Scientific applications of the GPS include measuring seismic tectonic motions, Earth 
orientation and polar motion, gravimetry, neutral atmospheric temperature and water 
vapor profiling, and ionospheric electron density profiling and global monitoring (see, 
e.g., Beutler et al., eds., 1996).  All of these applications have been well proven and 
provide new ways to enhance our knowledge about the Earth and its environment.  More 
recent and less developed applications explore the possibility to utilize the GPS signals 
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scattered off the ocean and sensed by an air- or space-borne receiver in a bistatic radar 
geometry, as a means of doing altimetry and scatterometry.  When considering the 
constellation of 24 GPS transmitters and one such receiver, a multistatic system is 
obtained, capable of intercepting bounces from several areas of the ocean simultaneously. 
As in traditional altimetry, the bistatic GPS reflected signal can be analyzed to derive 
three important descriptors of the ocean surface:  the bistatic path delay from which the 
ocean height can be derived, the ocean surface wind and the ocean significant wave 
height. 
 
Traditional altimetry, such as Topex/Poseidon and Jason-1, is limited to looking in the 
(nominal) nadir direction and obtaining one height observation at a time below the 
altimeter; by contrast, a GPS receiver in low-Earth orbit (LEO) with an antenna pointed 
toward the Earth’s surface can, in principle, track  about  10 GPS reflections 
simultaneously, therefore providing a coverage that is an order of magnitude denser than 
nadir-viewing altimeters.  Such dense coverage can be translated into a higher temporal 
and spatial resolution, therefore indicating the ability to recover certain ocean topography 
features or processes that are precluded with traditional altimeters.  These include the 
possible measurements of mesoscale eddies (Wu et al., 1998) which play an important 
role in the transport of momentum, heat, salt, nutrients, and other chemical properties of 
the ocean.  Mesoscale eddies are ocean features analogous to atmospheric storms, which 
result in sea-height changes above the mean (peaks and valleys) of about 10 cm on 
spatial scales between ~10-100 Km with temporal evolution of ~ 1 week to 1 month.  
Another possible application of very rapid coverage of the ocean is the monitoring of fast 
moving barotropic waves that propagate across ocean basins too quickly to be seen by the 
Jason-1 10-day repeat cycle (Stammer et al., 2000).  In this paper we attempt to define 
what is required in terms of a GPS-reflections receiving system to make these 
measurements from space. 
 
A concept for GPS-based altimetry was first proposed by Martin-Neira, (1993) and 
contains a high-level overall system description.  Since then, several additional 
theoretical work modeling the expected signal waveform and accuracy have appeared 
(Picardi et al., 1998; Zavorotny and Voronovich, 2000; Fung et al., 2001).  An air-borne 
delay-mapping GPS receiver was developed (Garrison and Katzberg, 1998; Garrison 
and Katzberg, 2000) and used in several experiments which demonstrated the capability 
of retrieving wind speed (Komjathy et al., 2000; Garrison et al., 2002).  Further 
experimental campaigns to characterize GPS altimetry from a fixed location over a lake 
(Treuhaft et al., 2001) and an airplane (Lowe et al., 2002a) have recently been conducted.  
The first GPS reflection from space was detected fortuitously from analyzing the data 
collected from SIR-C on board the space shuttle (Lowe et al., 2002b).  More evidence of 
GPS reflections were also found in the CHAMP occultation data (Beyerle and Hocke, 
2001). 
 
None of these papers discuss in detail several very important issues with regard to space-
based ocean altimetry, such as coverage, resolution, accuracy and feasibility.  The aim of 
this paper is to address these issues in some depth.  In connection to this we discuss the 
scattered signal waveform and suggest a novel approach of deriving ocean height, surface 
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wind and significant wave heights.  This paper focuses on GPS altimetry from space-
borne receivers, although many of the principles discussed here are applicable to air-
borne receivers as well.  This paper is organized as follow.  Section 2 discusses the 
altimetry coverage from a receiver in LEO as a function of the receiving antenna field-of-
view and pointing.  Section 3 discusses the bistatic altimetry footprint and the associated 
coherence time and their dependence on several factors which include: (1) the elevation 
of the scattered signal, (2) the direction of the incidence plane relative to the LEO 
satellite’s velocity and (3) the receiver’s integration time.  Section 4 describes the 
scattered waveform and suggests a specific approach to derive mean sea height, surface 
wind and significant wave height.  In that section, we investigate in some detail the effect 
of wind, ocean roughness, and Electro-Magnetic (EM) bias on the scattered waveform.  
In section 5 we examine the expected range accuracy and the corresponding ocean height 
accuracy for GPS-space-borne altimetry as a function of the receiver’s viewing angle and 
antenna gain.  In section 6 we examine the likelihood of phase tracking.  A discussion 
and a conclusion are given in section 7. 
 
2. Coverage 
 
To illustrate the coverage of GPS altimetry,  it is sufficient to treat the ocean surface as a 
perfect sphere with a well defined “specular reflection” point.  Fig. 1 shows a 
representative daily coverage (curves are the loci of the specular reflection points) of one 
receiver in LEO tracking all visible GPS reflections down to 15o elevation  (elevation 
here is defined with respect to the local tangent plane at the specular reflection point—ε 
in Fig. 2).  Unlike Jason-1, the coverage is not regular and does not have a repeat cycle; 
however, it is an order of magnitude denser provided that the receiving antenna has a 
sufficiently large field of view. 
 
Because the advantage of GPS altimetry lies mostly in its potentially very dense and 
rapid coverage, it is important to quantify the coverage as a function of the receiving 
antenna field-of-view and pointing.  To accomplish this, we consider the geometry of 
Fig. 2 where the GPS signal is reflected off the ocean surface at the specular reflection 
point and received by a satellite in LEO.  We define the following variables: 
 
θ  is the receiver’s viewing angle (angle between scattered signal and the LEO satellite 

nadir) 
φ  is the angle out of the plane in the azimuthal direction of the receiving antenna 
ε  is the elevation of scattered signal with respect to local tangent plane  
d and D are the distances from the specular reflection point to the LEO and GPS 

satellites, respectively 
L and G are the LEO and GPS satellites’ radii, respectively 
α   is the angle between the specular reflection point and the GPS satellite as seen from 

the Earth’s center 
Θ   is the angle between the GPS and the LEO satellite as seen from the Earth’s center 
R  is the Earth’s radius 
∆Θ is an increment in Θ corresponding to an increment ∆θ in θ 
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These variables are related through the following relations: 
 
 2 2 2 2 2 22 cos cos sind L dL R d L R Lθ θ θ+ − = => = − −  (1.a) 
 
 d2 + R2 + 2dRsinε = L2  (1.b) 
 
 D2 + R2 + 2DR sin ε = G2   =>  D = − Rsin ε + G2 − R2 cos2 ε  (1.c) 
 
 R2 + G2 − 2RGcosα = D2  (1.d) 
 

 Θ =
π
2

+α − θ − ε  (1.e) 

 
Given L, G and θ, we can derive d, ε, D, α and Θ from 1.a-1.e, respectively. 
 
Given the GPS satellites altitude of 20,000 km, and a receiver at 700 km altitude, we 
obtain the dependence of ε and Θ on the viewing angle θ as shown in figure 3.a.  Note 
that for values of θ < 40o, Θ grows linearly with θ.  Beyond θ =40o, Θ grows faster than 
linear, and increases particularly fast at θ > 60o.  This has very important implications on 
the visible number of reflected GPS signals.  To quantify this, consider the solid angle 
covered by an antenna system, i.e. several antenna arrays properly arranged on the 
spacecraft, with the two angular limits of its half power beamwidth (HPBW) in the 
directions of θ and θ+∆θ, with a full azimuthal view .  The corresponding reflection 
angles are Θ and Θ+∆Θ as shown in Figure 2.  The solid angle covered by such an 
antenna, Ω, and the corresponding average number of simultaneously visible GPS 
satellites are given by 
 

 Ω = sin ΘdΘ
Θ

Θ+ ∆Θ
∫ dφ

φ= 0

2π
∫ = 2π cosΘ − cos Θ + ∆Θ( )( ) (2.a) 

 NGPS = 24
Ω
4π

 (2.b) 

In deriving Eq. (2.b), we assumed that there are 24 transmitting GPS satellites distributed 
uniformly in their sphere.  (Currently the GPS constellation consists of 24 satellites and 5 
spares.) 
 
Figure 3.b shows the number of simultaneously visible GPS reflections by a receiver at 
700 km altitude per degree of θ and cumulative from 0 to θ.  From this figure we see, for 
instance, that the average number of simultaneously visible GPS satellites between 
θ = 0o and 55o (HPBW = 110o) is 6.5, while this number is 7 for θ between 55o and 
64.2o (HPBW = 9.2o).  Table 1 lists three  examples corresponding to (1) an antenna 
system pointing toward nadir with HPBW of 90o (2) an antenna system pointing toward 
nadir with HPBW of 120o needed to see a minimum of 8 GPS satellites, and (3) a 
doughnut shaped antenna system beam pointing close to the limb. 
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There are several disadvantages associated with pointing away from nadir which include:  
(1) the sensitivity to ocean height is weaker at lower elevations, (2) the scattering 
footprint gets larger at lower elevation.  However, these have to be weighed against a 
longer coherence time and larger scattering area which might result in a larger signal-to-
noise ratio and a reduced error in the measured signal delay.  All these factors would 
have to be carefully examined as we are set to do in the next few sections. 
 
Note that we do not identify any existing antenna systems which would provide the wide 
coverage discussed above, but we merely state that such a system can in principle be 
built, if cost is not an issue. Deciding which specific antenna to use for a given 
experiment will depend on several factors including the surface area available on the 
LEO satellite. This is likely to result in reduced coverage in any practical 
implementation. 
 
3. Footprint shape, size and associated coherence time 
 
There are several factors that determine the shape of the GPS bistatic altimetry footprint.  
These factors include the elevation of the scattered signal, the direction of the incidence 
plane (defined according to specular reflection geometry) relative to the LEO satellite 
velocity, the LEO satellite height, and the range and Doppler filter implemented in the 
receiver.  This section examines these factors by first providing an overall review and 
later considering some limiting cases. 
 
3.1 Footprint shape 
 
While an exact determination of the footprint shape requires knowledge of the mean sea 
surface, a first-order approximation, which is used in this section, is to model the ocean 
surface as a plane tangent to a spherical Earth at the specular reflection point.  This turns 
out to be an extremely good approximation (as we shall see below) because the altimetry 
footprint is very small relative to the curvature of the Earth. 
 
Each GPS satellite transmits two carrier frequencies at L-band (L1 ~ 1.6 GHz, and L2 ~ 
1.2 GHz) modulated by a pseudo-random code (P-code),  at the rate of 10.23 MHz (~ 30 
m wavelength, duration of ~ 0.1 µsec, referred to as “chip”).  In addition, the L1 carrier 
has a quadrature signal that is modulated by a Coarse Acquisition code (C/A-code) at 
one-tenth the P-code rate.   When tracking the direct signal, a GPS receiver measures the 
carrier phase, essentially by a phase-locked loop, and the pseudorange1 by searching for 
the maximum correlation between the received P-code or C/A-code and an internally 
generated delayed model of the code.  
 

                                                 
1 Pseudorange is the speed of light times the time difference between the transmitter’s clock and the receiver’s clock.  
It includes the transmitter’s and receiver’s clock errors, the time of propagation between the transmitter and the 
receiver including the atmospheric and ionospheric delay. 
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When the GPS signal is scattered off the ocean surface, the smallest  expected delay, Ls, 
corresponds to that of the specular reflection point determined based on the mean sea 
surface.  The footprint associated with delays between Ls and Ls + Λ/2 is an ellipse with 
semi-major and -minor axes given by 
 

a =
∆χ
2

=
1

sin ε
dDΛ

d + D
 
 

 
 

1/ 2
,  b =

∆y
2

=
dDΛ
d + D

 
 

 
 

1/ 2
                                  (3) 

 
to first order in Λ/d and Λ/D.  The variables of Eq. (3) are defined in figure 2.  This 
ellipse is defined by the intersection of a spheroid with foci at the transmitter and receiver 
with the tangent plane at the specular reflection point  (See figures 4.a and 4.c).   In Eq. 
(3), a remains accurate to better than 2% above 10o elevation and to better than 10% 
above 1.6o elevation, while b is practically unaffected by the curvature of the Earth. 
 
When tracking a GPS reflected signal, phase coherence is expected to be lost in a few 
milliseconds due to ocean roughness. This, in addition to the generally small reflected 
signal-to-noise ratio (SNR), make it impossible to lock onto the phase, except when the 
scattering surface is sufficiently smooth (as discussed in section 6). However, 
measurement of pseudorange is possible by coherently correlating the received signal and 
a delayed version of the modulating code over a few milliseconds during which the 
received signal is coherent and then incoherently averaging the amplitude of thousands of 
correlation functions obtained over a few seconds (Lowe et al., 2002b). 
 
In addition to the time delay, the scattered signal is also Doppler-shifted by an amount 
determined mainly by the angle between the direction of the scattered signal and the 
velocity of the receiver as depicted in figure 4.b.  To first order the iso-Doppler lines are 
hyperbolas with a symmetry axis defined by the projection of the receiver’s velocity on 
the Earth’s surface (contribution due to the transmitter can be neglected).  Figure 4.c 
shows the iso-Doppler contours (appearing as nearly straight parallel lines) on the Earth 
surface, corresponding to a receiver at 700 km altitude, 45

o
 incident angle, and a 

Doppler-shift separation of 250 Hz between adjacent lines.  The n-th annulus of Fig. 4.c 
is the area between the two ellipses corresponding to delays Ls + (n – 1) Λ/2 and Ls + n 
Λ/2., where Λ = 1 P-code chip.  While the smallest footprint, set by the first ellipse of 
figure 4.c, is of order (10 km)2 for a spaceborne receiver  and 10 km2 for an airborne 
receiver, the actual resolution is set by the size of Λ or the size of the receiving antenna 
footprint, and the non-coherent averaging time necessary to reach a certain accuracy, as 
discussed later.  
 
While figure 4.c depicts the general shape of a footprint defined by the intersection of 
iso-range and iso-Doppler lines, for our discussion we consider two limiting cases: 
 
Case one: LEO satellite’s velocity is parallel to the incidence plane 
 
This case can be represented by the geometry of figure 2 by imagining the LEO satellite 
to be moving in the same plane as the reflected ray (we will refer to this plane as the 
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incidence plane, the plane perpendicular to that will be referred to as the normal plane).  
In this geometry the footprint of the reflected signal is given by the intersection of the 
iso-Doppler lines and the iso-range lines as depicted in figure 5.a.  Two points on the 
surface separated by distance ∆x will have a Doppler shift separation of B given by 

 B =
∆x
λ

sin ε
vLEO cosθ

d
−

vGPS cosθGPS
D

 
 
  

 
   (4) 

where λ is the carrier wavelength, vLEO and vGPS are the velocity components of the 
satellites in the incidence plane, θGPS is the angle from the GPS satellite nadir to the 
reflection point (θGPS < 14o) . (We note that for a receiver in space the contribution due to 
the GPS motion is no more than ~5% of the total Doppler shift and will be ignored.)  A 
receiver of bandwidth Br will low-pass filter the reflected signal according to sinc2(B/Br) 
(where [ ] [ ]sinc sinx x xπ π= ).  When B/Br=0.44, sinc2(B/Br)=0.5.  Therefore, choosing 
the receiver bandwidth Br to be ≥ 2.27B will set the resolution in the LEO velocity 
direction to be ≥ ∆x of Eq. 4. 
 
Case two: LEO satellite’s velocity is perpendicular to the plane of incidence 
 
This case can be represented by the geometry of figure 2 by imagining the LEO satellite 
to be moving out of the page.  In this geometry, the elongated part of the ellipse is 
parallel to the iso-Doppler lines (see figure 5.b); the Doppler bandwidth and the distance 
between iso-Doppler lines are related by (ignoring the GPS motion) 

 
d
yvB LEO ∆

=
λ

 (5) 

We note that there is no dependence on elevation, ε, in Eq. (5).   Again, the filter 
bandwidth Br ≥ 2.27B must be chosen for the receiver. 
 
3.2  Footprint size 
 
The footprint shape and size depend on several factors: (1) The specific iso-range that is 
considered to be necessary for signal detection (e.g., the iso-range of figure 4.c 
corresponds to 1/2 P-code chip); (2) The Doppler filter in the receiver which determines 
the boundaries between iso-Doppler lines; (3) The direction of the incidence plane 
relative to the LEO satellite’s velocity; (4) The LEO antenna viewing angle; (5) the LEO 
antenna field-of-view in the event when it is very narrow; and (6) the LEO altitude.  In 
what follows we quantify these effects in some detail for the two different cases 
discussed in section 3.1 and depicted in figures 5.a and 5.b. 
 
Case one: vLEO || to incidence plane 
 
In this case the resolution in the direction of the incidence plane is set by the smallest of 
∆x given by Eq. (4) and ∆χ (indicated in figure 5.a and given by twice a in Eq. (3)).  ∆x 
and ∆χ depend on our choices of the receiver bandwidth Br and the delay Λ, respectively.  
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We distinguish between two possible choices  which we refer to below as iso-range-limit 
and iso-Doppler-limit.   
 
In the “iso-range-limit” the footprint size in the incidence plane is set by the major axis of 
the smallest ellipse of figure 5.a.  In this case the optimal choice of the receiver 
bandwidth is Br=2.27B, where B is given by Eq. (4) with ∆x = ∆χ.  A choice of B which 
corresponds to ∆x > ∆χ is not optimal since is does not improve the resolution while it 
increases the receiver’s noise.   In the “iso-Doppler-limit” the receiver bandwidth is 
chosen such that B corresponds to ∆x < ∆χ in order not to exceed a desired footprint size. 
 
In order to illustrate these two choices, consider the example of figure 6 which shows the 
size of the footprint as a function of the viewing angle.  For θ < 60o, the dimension of the 
footprint in the incidence plane is set by a of Eq. (3) with Λ = 1 P-code chip.  When ∆χ 
exceeds 50 km in our case, then the “iso-Doppler-limit” can be applied to maintain the 
size of the footprint in the incidence plane to 50 km (θ > 60 o).  The dashed portion of the 
curve corresponds to the size of the footprint if we were to continue to expand the 
Doppler limit to match the size of the first iso-range ellipse. 
 
The size of the footprint in the normal plane is independent of the choice of the receiver 
bandwidth and is given by twice b in Eq. (3).  The dependence of b on the viewing angle 
is shown by the dotted curve of figure 6 for Λ = 1 P-code chip. 
 
Case two: vLEO ⊥ to incidence plane 
 
In this case (figure 5.b) the elongated part of the ellipse is parallel rather than 
perpendicular to the iso-Doppler lines, therefore the resolution in the incidence plane 
cannot be improved by applying the Doppler filter limit as in the first case.  The 
resolution in the incidence  and normal planes are given by the dashed  curve and dotted 
curve of figure 6, respectively. 
 
There are several implications to the growing footprint for larger viewing angles (smaller 
elevations).  First, the resolution is worse.  Second, the radiating surface is larger, 
therefore increasing the signal strength.  Third, the coherence time of the scattered signal 
is larger, further enhancing the detectability  of the signal as discussed below. 
 
3.3 Coherence time 
 
When the ocean is rough relative to the GPS carrier wavelengths, the entire surface can 
be thought of as a radiating object.  In this case it is helpful to describe the ocean as a 
large ensemble of scattering cells, and the scattered signal can be modeled as the 
superposition of the returns from many elements, each with different time delay τk, phase 
ϕk,  and amplitude αk, therefore we write the received electric field as 

 ELEO = αk e
−i

2πc
λ

τk +ϕk
 

 
 

 

 
 

k
∑  (6) 
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where c is the speed of light and λ is the carrier wavelength.  Over a short time scale 
where the surface can be assumed to be stationary, the radiated pattern of the ocean will 
not change and the receiver will travel across several wave fronts. Here we would like to 
determine the coherence time, tcoh, which is defined as the time it takes the receiver to 
travel across two wavefronts.  
 
Given a radiating surface area defined by the footprint as discussed in section 3.2, 
consider the radiation from any two points (1) and (2) inside that area (see Fig. 7).  
Assuming the two points are radiating toward the receiver with the same power level, an 
assumption that is satisfied whenever the footprint is small relative to the glistening 
zone2, the radiated field at the receiver from these two points is proportional to  

cos
2π
λ

d1 + ϕ1
 
 
  

 
 + cos

2π
λ

d2 + ϕ2
 
 
  

 
 = 2 cos

1
2

2π
λ

d1 + d2( )+ ϕ1 + ϕ2
 
  

 
  cos

2π
λ

d1 − d2( )+ ϕ1 − ϕ2
 
  

 
  

 
Ignoring the GPS motion, as the receiver moves we note that (1) the term (d1-d2) varies 
more rapidly than (d1+d2), (2) the variation of (d1-d2) is most rapid when the two points 
are in the plane defined by the receiver’s velocity vector and the direction of the reflected 
signal, and (3) the variation of (d1-d2) is faster the larger the separation between the two 
points (1 and 2 in Figure 7).  Therefore, the coherence time,  tcoh, is set by the two 
boundary points on the footprint in the plane defined by the receiver’s velocity vector and 
the direction of the reflected signal.  Once these two points are determined, tcoh is given 
by δ/c where δ is the distance the receiver has to travel such that (d1-d2) – (d’1-d’2) is 
equal to one carrier wavelength (see Fig. 7). 
 
Considering the two cases 1 and 2 of section 3.2 (vLEO parallel and perpendicular to 
incidence  plane, respectively), the coherence time in the first case is set by the shorter of 
∆x and ∆χ on Fig. 5.a and corresponds to the inverse of B given in Eq. (4), while in case 
2 it is set by ∆y of Fig. 5.b and corresponds to the inverse of B given in Eq. (5).  The 
dependence of the coherence time on the viewing angle is shown in Fig. 8.  The 
following observations are in order: 
 
(1) In both cases 1 and 2 the coherence time grows for larger viewing angle (smaller 

elevation) 
(2) The very rapid growth of the coherence time indicated by the solid curve of Fig. 8.a 

at θ>60o corresponds to the point at which the “iso-Doppler limit” is applied (the 
solid curve of Fig. 6 where ∆x becomes  < ∆χ).  This rapid growth is due to a smaller 
ε, larger θ and larger d in Eq. 4 which correspond to the following physical reasons, 
respectively:  (a)  The effective radiating area on the surface as viewed by a satellite 
at elevation ε scales as sin(ε),  (b) the Doppler shift rate grows as cos(θ), and (c) the 
angular separation between two points of fixed distance on the ocean as viewed by a 
LEO satellite decreases as 1/d. 

                                                 
2 The glistening zone is defined as the area on the ocean delimited by a scattering coefficient equal to 1/e of 
the maximum, occurring at the specular reflection.. 
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(3) The dashed portion of the curve in Fig. 8.a corresponds to the coherent integration 
time if we were to continue to expand the Doppler iso-range to match the size of the 
first iso-range ellipse. 

(4) Coherence time estimated here is based on a rough random surface which is 
stationary.  Realistically, ocean waves change their relative shapes over a time scale 
known as ocean correlation time.  Once the ocean correlation time is established for 
L-band, the part of the curves in Fig. 8 for which the coherence time is larger than 
the ocean correlation time becomes invalid. 

(5) The increase of coherence time implies that we can afford to have less antenna gain 
when at larger viewing angles to obtain the same range accuracy.  This will be 
discussed further in section 5. 

 
4. GPS altimetry and derivable physical quantities 
 
4.1 Reflected signal “waveform” 
 
As already stated, we are modeling the received signal as the sum of returns from a very 
large number of independent scatterers on the ocean surface, as given by Eq. (6).  The 
time delay τk can be easily determined based on the positions of the transmitter, the 
receiver and the k-th scattering element on the surface.  The phase ϕk is a complicated 
function of the electromagnetic properties and roughness of the scattering element and 
the polarization of the signal.  The amplitude αk is the square root of the scattered power, 
Pk, which is given by the radar equation 

 Pk =
PtGt
4πDk

2
 

 
 

 

 
 

σ0k Ak

4πdk
2

 

 
 

 

 
 

λ2Gr
4π

 

 
 

 

 
  (7) 

with: 
Pt transmitted power 
Gt transmitter’s antenna gain 
Dk, dk distances from the transmitter and receiver to the k-th scattering element, 
respectively 
σ0k scattering cross section coefficient  
Ak the k-th element scattering area 
Gr receiver’s antenna gain 
 
When tracking the direct signal, a GPS receiver measures the pseudorange by searching 
for the maximum correlation between the received P-code and an internally generated 
delayed model of the same P-code.  In the limit of a perfectly calm sea, the reflected 
signal can be thought of in the same manner as the direct signal but with a longer delay.  
In this case, the contribution from all terms of Eq. (6) will cancel except for one term 
which corresponds to specular reflection (conventionally we define it to be the first term).  
In this limit, when correlating the received reflected signal with a model signal of delay 
τm and phase ϕm, and integrating over a few milliseconds, the correlation function is 
approximately a triangle function, Λ(τm − τ1) (Spilker, 1980) , as illustrated in Figure 9.a, 
multiplied by the amplitude a1 and the phasor exp[i(ϕm − ϕ1)] .  
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When the surface is rough, because of superposition, each term in Eq. (6) contributes to 
the correlation function to give 

 Rp (τ m ) = αkei(ϕ m −ϕ k ) Λ(τm − τ k )
k =1

∞
∑  (8) 

Squaring Eq. (8), taking the ensemble average, accounting for the cancellation of cross-
terms from different scatterers due to the assumption of incoherent scattering, and 
explicitly writing the weighting factors from Eq. (7), we get 
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where dxdy denotes the integration over the ocean’s surface.  By explicitly moving all the 
factors multiplying Λ2 outside the integral in Eq. (9), we are assuming that the integration 
is over an area that covers several iso-ranges but small relative to the glistening zone and 
the receiving antenna footprint; such would be the case for a receiver in space and for a 
sufficiently broad-beamed antenna.  By assuming that the process is ergodic, in practice 
we can get the equivalent of this ensemble average by incoherently averaging the few-
milliseconds measurements obtained over a few seconds.  Figure 9.b shows a graphical 
representation of Eq. (9) where the solid line corresponds to the cell with the shortest 
possible path and the dashed lines correspond to an infinite number of cells placed 
around the specular point at progressively increasing distances.  The sum of all these 
contributions gives the “ideal” correlation function shown in Fig. 9.c.  This correlation 
function is analogous to the waveform used in traditional altimetry. 
 
Ignored in Eq. (9) is a sinc2(B/Br) term which results from the finite frequency bandwidth 
of the receiver (see Sec. 3.1).  Eq. (9) is a good approximation when the receiver’s 
bandwidth is large enough where it does not impose any spatial filtering on the area of 
integration contributing to the leading edge.  A more complete characterization of the 
waveform is contained in [Zavorotny and Voronovich, 2000].  The simplification made 
here allows us to highlight the behavior of the leading edge of the waveform (which is 
not the focus of the Zavorotny and Voronovich paper) in a more intuitive fashion and to 
understand its relation to physical quantities of the sea state. 
 
We note the following important features of the waveform: (1) It has a rise time of 
exactly 2 P-code chips. (2) The rise starts at model delay τm = τ1 -1 P-code chip. (3) It 
saturates at some peak height (but eventually starts to drop as we move sufficiently away 
from the specular reflection point due to moving outside the glistening zone or the 
antenna foot print). 
 
By taking the Derivative of the Correlation Function (DCF) of Figure 9.c with respect to 
the model time delay, we obtain the function shown in Figure 10.  Note that it exhibits a 
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sharp peak, originating from the change of concavity of the curve of Fig. 9.c, which 
always occurs at the lag time correspondent to the return from the shortest path.  The 
effect of the wind speed and surface statistics introduces modifications to the ideal shape 
of Figure 10 in a manner that allows us to extract the important sea state parameters of 
interest in altimetry, as will be illustrated shortly.  The following physical parameters can 
be derived from this function: 
 
(1) Mean sea height—derived from knowledge of the location of the DCF peak relative 
to the model delay 
(2) Ocean surface wind—derived from the height of the DCF peak 
(3) Significant wave height—derived from the width of the DCF 
 
The derivation of these three parameters from the DCF is discussed in detail below.  
However, it is important to restate the assumptions under which this discussion is valid.  
In deriving the DCF of Fig. 10 we assumed that the surface is rough relative to the GPS 
wavelengths, the antenna field of view is large relative to the footprint, and the footprint 
corresponding to a few P-code chips is small relative to the glistening zone.  The latter 
condition implies that the ocean is rough and that the receiver is sufficiently high above 
the surface (e.g., in space).  When either one of these conditions are not satisfied, the 
correlation function is somewhere between that of Fig. 9.a (perfectly smooth surface 
condition) and Fig. 9.c (rough surface condition) with a rise time and trailing edge that 
depend on roughness, receiver’s height, and receiving antenna gain and orientation 
[Komjathy et al., 2000; Lowe et al., 2002a,b]. 
 
4.2 Deriving mean sea height 
 
The DCF of figure 10 has a sharp peak at the specular reflection point from which the 
path delay of the received signal can be measured.  The expected accuracy of the delay 
measurement is discussed in detail in Section 5, here we only consider how it is possible 
to derive mean sea height from the bistatic path delay.  
 
This delay measurement contains the following terms (ignoring the EM-bias for now): 
1) Ionospheric delay 
2) Clock errors in the transmitter and the receiver 
3) Neutral atmospheric delay 
4) The path length between the GPS transmitter phase center to the specular point as 

defined by the mean sea surface and then to the receiver’s phase center.  This term is 
determined by the position of the transmitter and the receiver and the mean sea 
surface height. 

 
In principle, the ionospheric delay can be solved for and removed from measurement of 
the dual GPS frequencies.  The transmitter and receiver clocks drift can be eliminated by 
differencing the reflected measurement from the direct one.   Neutral atmospheric delay 
can be calibrated to about 10 cm as discussed below.  The position of the transmitter and 
the receiver can be determined accurately (usually to better than a decimeter) from direct 
measurements to the GPS satellites.  Therefore, the path delay measurement can be 
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translated into mean sea height in a similar manner to what is done for traditional 
altimetry. 
 
Neutral atmospheric delay is of order 4/sin(ε) meters (since the signal is traveling twice 
through the atmosphere), 90% of which is due to the dry atmosphere (e.g., Bevis et al., 
1992).  There are two methods by which the neutral atmosphere can be accounted for: (1) 
By solving for it, which is possible due to the different zenith-to-line-of-sight mapping 
functions of the neutral atmospheric delay and the delay due to uncertainty in mean sea 
surface height.  The former goes roughly as 1/sin(ε) while the latter goes as sin(ε).  (2) 
By calibrating it with data obtained from a  global circulation model (GCM) such as the 
European Center for Medium-range Weather Forecast (ECMWF) analysis. The former 
method has been pursued by Wu et al., (1998) and simulations indicate that, with a single 
receiver in LEO, assuming 75 cm range delay rms error, it is possible to obtain 15 cm 
ocean height accuracy over ~500x500 km2 areas, after 1 day of averaging.  Their study, 
however, does not account for different temporal and spatial variations of the ocean and 
the atmospheric moisture and further research is needed in this area to reach an optimal 
solution.  In the second approach, it is possible to calibrate the atmospheric delay to 
better than ~97% (the error is mostly due to water vapor).  In this case, neutral 
atmospheric error will be of order ~15/sin(ε) cm.  The sheer number of range 
measurements obtained from a receiver in LEO allows us to average down this error to a 
very small value, assuming there are no systematic biases in the GCM analysis. It is most 
likely that a hybrid between the two approaches mentioned above will provide an optimal 
solution, since the former approach is especially suitable for detecting any possible biases 
in the analysis, while the latter approach will not weaken the data strength significantly. 
 
As discussed in section 5, the expected accuracy of range measurement for a receiver in 
space with a ~23 dB antenna is about 1 m after 4 seconds of averaging. This 1 m range 
random error will map to an error of 0.5/sin(ε) meters of ocean height, or ~0.7 m on 
average.  Even though this accuracy does not reach that of traditional altimetry from 
space, the real advantage of doing altimetry with GPS is the dense and rapid coverage 
where much averaging can be done.  To illustrate this point we consider the simplistic 
approach of averaging presented below. 
 
Assuming that we track 8 GPS reflected signals simultaneously, a receiver in LEO will 
observe ~ 0.2 million 4-sec measurements of ocean height in one day.  These are 
separated by about 25 km in the direction of the reflection point motion and an average of 
100 km between tracks.  By dividing the ocean into small areas, mean sea height 
estimates, obtained from different GPS signal reflections within the same area, can be 
averaged to reduce the random errors by the square root of the number of measurements.  
Table 2 summarizes the resolution and the corresponding error in height achievable from 
one receiver in space averaged over  1, 4 and 8 days . A small LEO constellation further 
improves the values due to averaging, as would the inclusion of the European GALILEO 
reflected signals.  For instance, eight LEO satellites tracking GPS and GALILEO would 
provide global 3-cm ocean heights in 1 day over 200-km scales; or global sub-decimeter 
height accuracy in 4 days over 25-50 km scales, suitable for ocean mesoscale flow or 
eddy studies of heat transport.  Needless to say, these are simplistic first-order estimates 
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of the random errors of mean sea height which are possible with GPS altimetry; a much 
more elaborate study of how these errors would average down and of systematic errors 
must be considered before any definitive statement regarding the utility of GPS altimetry 
can be made. 
 
4.3 Deriving ocean surface wind 
 
Assuming that the incident power, the antenna gain, feed losses, and pointing geometry 
can all be calibrated, knowledge of the peak value of the DCF can be used to determine 
σ0 via equation 7.  In the geometric optics (GO) limit of the Kirchhoff approximation, 
valid at high frequencies, the dependence of σ0.on the wind speed has been postulated for 
some time (Brown, 1978) for the nadir geometry of traditional altimetry and, more 
recently, it has been extended to the bistatic geometry in (Zavorotny and Voronovich, 
2000).  The latter reference discusses the dependence of wind speed on the slope of the 
trailing edge of the correlator output whereas we restrict our attention to the peak height 
of the DCF.  The difficulty in Zavorotny and Voronovich’s approach when collecting 
reflections from space is that the trailing edge decays because of factors other than wind 
such as the Doppler filter or the antenna gain.  On the other hand, the sensitivity of the 
peak amplitude will increase for space-borne receivers versus air-borne ones due to the 
relative size of the glistening zone and its contribution to the peak height. 
 
According to the above referenced approaches, the ocean surface wind speed affects 
σ0. through the mean square slope (mss) of the surface.  If the ocean surface spectrum 
Φ(k,ϕ) (k is the ocean spectrum wave number, ϕ is the angle in azimuth) is known, the 
mss can be calculated from an integration of the function k2Φ(k,ϕ) (see, for example, 
Elfouhaily, 1998) over the spectral domain ranging from k=0 to a value kmax 
corresponding to the smallest surface feature the operating wavelength is sensitive to. 
Alternatively, empirical models of mss versus wind speed have been obtained (although 
not at L-band) (Elfouhaily, 1998) in simple closed form (which are used to check the 
correctness of ocean spectra, or at least the integral of k2Φ(k,ϕ)). Since there are several 
proposed ocean spectra, most of which disagree with one another in portions of the 
spectral range, there is ambiguity in the derivation of σ0.versus wind speed via spectral 
integration, and further investigation is needed.  In particular, at L-band the sensitivity of 
the result on the truncation point is rather high.  Indeed this point raises the question of 
the validity of a high frequency approach such as the GO model at L-band, and more 
work is needed in this area. A discussion of this issue is provided by (Fung et al., 2001). 
Nevertheless, based on preliminary experimental validations with data taken from 
airplane, an accuracy in wind speed retrieval of 1-2 m/sec was observed (Komjathy et al., 
2000), based on Zavorotny and Voronovich’s approach. 
 
4.4 Deriving Significant Wave Height (SWH) 
 
Thus far, we have only considered the return from the mean sea surface and have ignored 
the effect of the distribution of the heights of the scattering points on the DCF.  Such 
effect has been quantified in traditional altimetry (Brown, 1977) as introducing a 
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convolution in the basic equation of the waveform.  A similar approach is used here.  A 
general probability distribution function (pdf) for scattering points is given in (Barrick 
and Lipa, 1985; Srokosz, 1986) 
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where z is the surface height, σ is the height standard deviation, λsp is the ocean surface 
skewness, and the parameter γsp describes the deviation of the mean of the pdf from the 
plane z = 0 and thus contributes to the description of the EM bias (Rodriguez, 1988).  The 
significant wave height is conventionally defined as SWH = 4σ. The convolution 
between Eqs. 9 and 10 is given by  
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where ε is the elevation of the specular reflection ray.  In obtaining Eqs. (11) and (12) we 
have (a) lumped all the terms outside the integral in Eq. (9) into C, (b) exchanged the 
integrations of dz  and dxdy, which is valid assuming ε and f(z) are independent of x and y 
over the area of integration, and (c) made use of the equality 

 τ(x , y , z) = τ (x , y, 0) − 2
z
c

sin(ε) . (13) 

ΛR
2 corresponds to the square of the correlation function of a reflection from a small 

surface area (over which x and y are essentially constant) but accounting for the ocean 
roughness; it is therefore the equivalent of Λ2 with the ocean roughness and skewness 
effects included.  
 
We have performed numerical convolutions for a variety of cases, including Gaussian 
and skewed oceans, and illustrate the results in Fig. 11.  Note that in the limiting case of a 
Gaussian sea with very small σ the convolution reproduces substantially the ideal 
correlator function Λ2, whereas for progressively larger σ the peak of the correlator 
decreases and broadens and its skirts extend beyond the original width of two chips.  
When skewness is included the shape of the resulting function becomes asymmetric and 
exhibits an offset which indicates that the time of arrival corresponding to the maximum 
no longer identifies the location of the mean plane, but rather the location of the mean of 
the surface pdf, which is lower.  This error is conventionally called the EM bias 
(Rodriguez, 1988). 
 
Now we turn our attention to the effect of the height distribution on the DCF (Fig. 10).  
We note that with increasing SWH the peakedness of the DCF will weaken and the peak 
value will decrease.  An example is illustrated in Fig. 12 for the case of a very large 
SWH, contrasted with an ideal situation of SWH  –> 0.  Note that the location of the peak 
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relative to the model delay shifts to lag values larger than zero; the extent of the shift is 
twice the EM bias.  For realistic sea surfaces, this shift is of order of a few nsec, thus 
requiring a very high resolution to locate it (as obtained in traditional altimetry).  The 
extent of peak smoothing and reduction is dependent on wind speed, SWH and elevation 
angle ε.  In particular note that wind speed and SWH are not totally independent 
quantities; in fact one component of SWH is wind driven whereas another component is 
swell driven. In general, height, wind speed and SWH will have to be solved for 
simultaneously, in principle using parameter estimation techniques similar to those of 
retracking in traditional altimetry.  At large angles of incidence the effect of SWH on the 
DCF is reduced since it is the component of SWH along the direction of propagation 
which determines the shape of the correlator and the DCF.  This means that sensitivity to 
SWH is reduced for small values of ε, consistent with the fact that the ocean appears 
smoother and sensitivity to height is also reduced.   
 
4.5 Preliminary DCF validation with data  
 
To establish confidence in the usefulness of our proposed DCF, we obtained the 
numerical derivative of data constituting the first spaceborne observation of GPS 
reflections, collected from the Space Shuttle in October 1994 with an L-band antenna 
(not a GPS antenna, but one capable of receiving the L2 GPS signal) pointing over the 
ocean surrounding the Galapagos Islands.  The data analysis and comparison with a 
model is detailed in (Lowe et al., 2002b). A complete signal model was developed which 
generalizes the simple Eq. 11 to account for the antenna gain , the receiver bandwidth 
and the nonlinear scaling of the coherently integrated signal when averaged incoherently.  
A best fit between the data incoherently summed over 4 sec and our model was obtained, 
and is reproduced in Figure 13a. By contrast, Figure 13b is a comparison between the 
numerical derivative of the data and that of the model. The data sampling rate was 89.994 
MHz, much higher than that of typical GPS applications, resulting in one data point every 
11 nsec approximately. In generating the model derivative a denser array of points was 
used to show a more precise location of the DCF peak.  Locating the peak of the DCF of 
the data by extrapolation is also possible, as the figure clearly illustrates. A discussion on 
specific strategies on how to obtain the DCF in practice is beyond the scope of this work; 
here we simply point out that our choice for an “altimetry waveform” useful with the 
GPS signal is borne out by existing experimental data.  
 
5. Measurement Accuracy 
 
5.1 Range Accuracy 
 
We now turn our attention to estimating the range accuracy expected from a space-borne 
receiver.  The range error (which comes from the error in determining the position of the 
peak of the DCF of Fig. 10) depends on several factors including (1) the sampling rate, 
(2) the chip-code wavelength (C/A vs. P-code), (3) the exact algorithm used in the 
receiver to estimate the peak location.  Careful examination of these factors would 
require a detailed understanding of the GPS signal structure and the manner in which it is 
processed which is beyond the scope of this paper.  For our purposes, we use as a proxy 
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the relationship between range error, P-code chip wavelength and signal-to-noise ratio as 
given by Thomas [1995] for the direct signal, where (the same relation has been used by 
Lowe et al., 2002b) 

 code chipk
VSNRτ

λ
σ −=  (11) 

where στ is the range rms error, λcode-chip is the P-code chip wavelength, VSNR is the 
voltage-to-noise ratio, and k is a proportionality constant which is roughly equal to 0.5.  
The VSNR is given by the square root of Eq. (9) divided by the receiver’s thermal noise.  
The receiver’s thermal noise is given by kBTB, where kB is Boltzmann’s constant, T is the 
system temperature, B is the receiver frequency bandwidth (given by Eqs. 4 and 5).  We 
make the following assumptions: 
 
PtGt/4πD2 = -160 dBw of received signal power levels at the ground with a 0 dBIC 
antenna.  
σ0 = 10 dB corresponding to wind speed ~10 m/sec at Ku-band (Lefevre and Barckicke, 
1994).  Observed range is between 7-17 dB, corresponding to wind speeds ranging 
between 2-24 m/sec. 
A is taken to be the area of the footprint according to Fig. 6 
T = 400 K for a receiver in space looking toward the Earth  
B is given by the inverse of the solid or dashed lines of Fig. 8. 
 
We note that the peak in Eq. (9) depends on the elevation angle via the variables d, A and 
B.  The scattering cross section (for incoherent scattering) σ0 is also elevation dependent 
and a precise bistatic characterization valid for all angles and typical sea surface 
roughness is still a challenging problem.  Fung’s general bistatic scattering model has 
recently been combined with a realistic ocean spectrum (Elfouhaily, 1997) to investigate 
roughness (wind) sensitivity versus incidence angle (Fung et al., 2001).  Based on these 
preliminary results we expect that the total σ0 will be slightly increasing perhaps down to 
elevation ε = 20o.  Moreover, the sensitivity to wind, expressed as differences between  
σVertical and σHorizontal, is shown to increase with decreasing elevation.  This is to say that 
the decrease in the σVertical will be entirely compensated by an increase in the σHorizontal, 
the precise extent of which will depend on surface roughness.  At very low elevation 
angles, the total σ0 will rapidly decrease to zero, however the coherent scattering 
mechanism might eventually ensue, again depending on surface roughness.  For the 
purpose of this discussion we will take σ0 to be constant. 
 
Using the above assumptions, we estimate the range accuracy at different viewing angles 
and different receiving antenna gains for the two geometrical limits considered in section 
3.2.  Fig. 14.a shows the range accuracy  for the case when VLEO || to incidence plane 
(case 1 of section 3.2) using the iso-Doppler limit to maintain a maximum footprint size 
of 50 km in the incidence plane.  Fig. 14.b shows the range accuracy for the same 
geometry but using the iso-range limit and allowing the Doppler filter bandwidth to 
expand such that the iso-Doppler lines match the iso-range footprint.  The corresponding 
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figure for the case when VLEO ⊥ to incidence plane (case 2 of section 3.2) is given in Fig. 
15. 

 
When estimating these range accuracies, the P-code is assumed to be known (no 
encryption).  In the presence of anti-spoofing (AS), the direct P-code signal can be used 
to replace the modeled P-code signal; in this case, the same range accuracies can be 
obtained by assuming an additional 3 dB of gain for the reflection antenna and about 10 
dB of antenna gain for direct signal.  Figs. 14 and 15 show that there is a considerable 
improvement in range accuracy for scattering at smaller elevations (higher incident 
angles).  This improvement is due to the increase in coherence time which more than 
compensates for the increase in the distance from the scattering surface to the LEO 
satellite.  For instance, in all the cases considered above, for a 20 dB gain, the range 
accuracy will reduce from 2 m at nadir viewing to 1 m at 60o viewing angle 
(corresponding to 15o elevation).  This factor of 2 improvement in range is equivalent to 
having an additional 6 dB of gain.  
 
5.2 Height Accuracy 
 
When the range measurement of the reflected signal is used to derive the ocean height, 
sensitivity is lost at low-elevation.  The ocean height error associated with a single range 
error στ is given by στ/(2 sinε) (obtained for a flat earth but valid to better than 6% for ε > 
2o for a spherical earth).  In order to quantify how much error observations at different 
elevations are contributing to the surface height we consider the following arguments:  
Given an area As on the ocean surface, NLEO number of LEO satellites observing GPS 
reflections, a period of observation τ, an averaging time ν per observation, then the 
number of reflection observations per degree of θ and the associated surface height error 
are given by 
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respectively, where dNGPS/dθ is the number of simultaneously visible GPS satellites per 
degree of θ (solid curve of Fig. 3.b), στ is the range error (given by Figs. 14 and 15) and 
R is the Earth’s radius. 
 
Assuming we have a constellation of 12 LEO (NLEO=12), τ = 10 days, ν = 4 sec., As = 
100×100 km2, we derive σh as a function of θ for the geometry of Fig. 2 and an antenna 
gain of 18 dB.  Results are shown in Fig. 16.  We consider σh for observations between θ 
and θ + 1o (solid lines), observations between 0o and θ (dotted lines; this corresponds to 
pointing the antenna toward nadir with a HPBW of 2θ and full azimuthal view) and 
observations between θ and the limb (dashed lines; this corresponds to pointing the 
antenna toward the limb with a HPBW of θ and full azimuthal view).  From the solid line 
we observe that data obtained at θ = 60o (ε = 16o) are most accurate in determining the 
ocean height due to the global minimum of στ at that angle.  When pointing toward nadir, 
the steep slope of the dotted lines implies that accuracy is improved considerably by 
enlarging the field of view.  By contrast, when pointing toward the limb, the flattening of 
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the dashed curve at some point below θmin = 30o-40o implies that no significant gain is 
obtained by enlarging the field of view below θmin.   
 
The point of intersection of the dashed curves in Figs. 16 corresponds to the angle where 
the two pointing geometries would yield the same accuracy.  A nadir pointing antenna 
with HPBW of about 92o would yield the same accuracy as a limb pointing antenna with 
HPBW of about 18o.  As mentioned in the introduction, from an antenna design 
consideration, building either one of these antennas may be equally demanding.  The 
reason is that the solid angle corresponding to the HPBW for the first antenna is ~1.9 
steradians while that of the second antenna is ~1.6 steradians, only about 15% smaller. 
 
The results presented in this section might be very counter intuitive.  These results are 
obtained with the assumption that σ0 is constant at all angles, an assumption that breaks 
down at very low elevations (ε < 20o).  The degree of decay of  σ0 is not well known and 
therefore the implication on our results cannot be well characterized.  Furthermore, we 
acknowledge that the growth of the footprint at low-elevation will degrade the resolution 
of the derived surface height.  Both of these issues need to be addressed fully before an 
optimal pointing range of angles for altimetry can be determined. 
 
6. Phase Tracking  
 
Thus far it has been assumed that phase coherence is only maintained over a short time 
(1-100 ms) defined by the minimum of the temporal coherence (the time it takes for the 
surface to change its shape) and the spatial coherence (set by the footprint size).  When 
the surface is smooth, this coherence time becomes irrelevant because variation in the 
shape of the surface will introduce a small variation in the phase making it possible to 
measure the phase with a phase-locked loop receiver.  The Rayleigh criterion is 
traditionally used to define the onset of incoherent scattering and is given by 

 h =
λ

8sin ε
.  (13) 

It implies that when the wave heights exceed h, reflections from the crest and the trough 
are different by more than λ/4 as can be seen from simple geometrical considerations.  
Applying this criterion to the GPS frequencies, we plot h as a function of θ in Fig. 17.  
We note that the ocean scatters incoherently when h ≈ 2 cm for normal incidence and 
when h ≈ 1 m for θ ≈ 64 o (ε ≈ 2o).  The former condition is nearly never satisfied while 
the latter condition is satisfied most of the time. 
 
There are several important considerations when the reflection is coherent: 
 
(1) When the ocean surface is rough, the reflected signal is scattered in all directions with 
weights specified by the surface scattering cross section.  When the ocean surface is 
smooth and scattering is coherent, the reflection is governed by geometrical optics where 
Snell’s law is applied locally at each point of the surface.  In this case, the radar equation 
(Eq. (3)) breaks down and the ratio of the scattered to the incident power is given by 
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where R is the Earth’s radius, RF is the Fresnel reflection coefficient and the other 
variables are defined in Fig. 2.  In the limit of small ε, the right-hand side of Eq. (14) 
reduces to (RRF

2 sin ε 2d)  which implies that the reflected signal is defocused due to the 
Earth’s curvature.  For ε = 2o, d = 700 km, RF

2 ≈ 0.6 for right-hand circularly polarized 
(RCP) reflected signal, then this factor is ~10%, which implies that the reflected signal is 
dominantly RCP and is ~10 dB down from the direct signal.  Therefore, with a modest 
antenna gain, the phase of the signal can be tracked by a phase-locked loop with 
centimeter level accuracy.  A coherent GPS reflected signal has been observed from 
CHAMP at grazing angles as reported by Beyerle and Hocke, 2001. 
 
(2)  One phase measurement with an accuracy of 1 cm obtained during coherent 
reflection is equivalent to 10,000 range measurements, each with 1 m accuracy as 
predicted in Figs. 14 and 15 for incoherent reflections.  
 
(3)  The footprint in no longer set by the P-code chip length but by the carrier wave 
length (i.e., the first Fresnel zone).  The size of the footprint would be given by the 
dashed and dotted curves of Fig. 6 scaled by a factor of about  12 (the square root of the 
ratio of the P-code chip to the carrier wavelength), therefore smaller than 10-80 km in the 
incidence plane and 2 km in the normal plane. 
 
These considerations make measurements of coherent reflections invaluable.  They also 
imply that, with proper and fairly simple modifications to the flight receiver, and antenna 
pointed toward the limb for the purpose of collecting GPS occultations, the system can be 
used for ocean reflection sensing. 
 
7. Discussion and Conclusion 
 
The fundamental characteristics of bistatic altimetry performed using the GPS signal 
scattered off the ocean surface and collected by a receiver in space are introduced.  The 
advantages of the dense and rapid surface coverage afforded by the existing GPS and the 
future GALILEO transmitters could enable new oceanographic applications such as eddy 
monitoring and tracking of fast barotropic waves if a constellation of receivers were 
tracking all the available reflections. To exploit the wealth of potentially available 
measurements, it is recommended that the pointing direction for the receiving antenna 
system should be able to move away from the satellite nadir and cover all azimuthal 
directions. The associated instrument footprint and coherence time are discussed and the 
implications in terms of the bandwidth of the receiver are also outlined.  
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An intuitive derivation of the GPS reflected signal is then presented by extension of the 
cross-correlation process used for direct GPS signals.  The characteristics of the leading 
edge are discussed to identify analogies and differences with the traditional altimetry 
waveform. In particular, the derivative of the leading edge exhibits a narrow peak 
corresponding to the time of arrival of the specular reflection point. This suggests a novel 
useful algorithm for extracting the mean sea height. This feature, peculiar to the GPS 
spread-spectrum signal, stems from the cross-correlation operation performed in the 
receiver and is not shared by the traditional altimeter waveform.  
 
An overall range accuracy rms value is predicted as a function of sea state and antenna 
gain. When averaging many measurements collected from a possible constellation of 
receivers, the range error is progressively reduced as a function of space and time, 
yielding predicted  accuracies in sea height estimation with associated spatial and 
temporal resolutions.  Preliminary calculations indicate that sea height accuracies of a 
few cm on spatial scales of 100 Km from measurements averaged over four days could 
be achievable.  
 
The effect of wind speed and significant wave height on the received signal is discussed 
and simulations are performed for a realistic range of wind speeds and wave heights. In 
particular, it is stressed that the bistatic geometry makes the sea height measurements less 
sensitive to wave heights than the conventional nadir viewing geometry.  This results in a 
reduced EM-bias as well. The range accuracy versus receiving antenna gain and 
scattering direction is discussed and a specific guideline on the gain necessary for 
altimetry from space is provided.  In particular, away from nadir both scattering cross 
section and coherence time increase, thus resulting in a potential decrease of the range 
error for a fixed antenna gain.  Finally, considerations on the possibility to track phase at 
small elevation angles and the resulting improvement in the range measurement accuracy 
are presented. 
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Figure 1:  A representative daily coverage of ocean altimetry with GPS and one LEO 

satellite 
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Figure 2:  A pictorial representation of the bistatic ocean reflection geometry between 

GPS and a LEO satellite. 
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(a) 

 
(b) 

 
Figure 3: (a) ε and Θ as a function of θ.  All angles are defined in figure 2. (b) Average 
number of simultaneously visible GPS satellites for three different solid angles; (1) per 
degree of θ and per degree of φ (dotted curve); (2) per degree of θ and full azimuthal 
view (dashed); (3) for a solid angle between 0-θ deg. and full azimuthal view.  The 
dashed curve corresponds to the dotted curve multiplied by (360 sinθ). 



 27

 
(a) 

 
(b) 

 
(c) 

Figure 4: (a) Depiction of the bistatic reflection geometry of GPS signal off the Earth 
surface and the first two iso-range contours. (b) Iso-Doppler contour is defined (ignoring 
the GPS satellite motion) by the intersection of the ocean surface and a cone with its 
focal point at the receiver and its axis in the direction of receiver’s velocity. (c) 
Intersection of iso-Doppler (appearing as nearly straight parallel lines) and iso-range 
(ellipses) contours on ocean surface defining footprints of bistatic reflection 
measurements.  
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(a) 

 
(b) 

Figure 5:  Subdivision of ocean surface by iso-range (ellipses) and iso-Doppler (straight 
lines) when the LEO satellite’s velocity is in the incidence plane (a) and in the normal 
plane (b). 
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Figure 6: Solid curve: incidence plane resolution using the “iso-Doppler limit” explained 
above.  Dashed curve: incidence plane resolution defined by the dimension of the 
smallest ellipse (the dashed and solid curves overlap for θ< 60o).  Dotted curve: 
resolution in the normal plane.   
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Figure 7.  Pictorial representation of reflection from two points, 1 and 2, on the surface of 

the ocean  at two different times 
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(a) 

 
(b) 

Figure 8: (a) Coherence time for case one of section 3.2.  The solid and dashed curves 
show the coherence time associated with the footprint given by the solid and dashed 
curves of Fig. 6, respectively. (b) Coherent integration time for case two. 
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(a) 

 
(b) 

 
(c) 

Figure 9: (a)  The amplitude of the time averaged correlation function of the direct GPS 
signal (or reflected from a perfectly smooth surface) with delay τ, based on a model 
function of the P-code with a model delay τm.  Tp is the period of one P-code chip.  (b)  A 
graphical representation of Eq. (9) where the correlation function is given as the sum of 
the solid line (the square of the amplitude in figure 9.a), and the dashed lines (an infinite 
number of delayed replicas which correspond to reflections from  favorably oriented 
facets around the specular point).  (c)  The shape of the ideal correlation function of the 
scattered signal. 
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Figure 10:  The derivative of the correlation function with respect to time delay in the 
receiver.  The center of the peak is an indication of the delay of the signal from which 
mean sea height can be derived, the height of this function indicates the ocean roughness 
from which the surface wind can be derived, the width of this function indicates the 
ocean significant wave height. 
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Figure 11. The ΛR

2 function and pdf of ocean specular points.  The parameter σeq =  
σ sin(ε) has been introduced. The skewness parameters for the thin solid curve are 
λsp=0.4, γsp=0.2. 
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Figure 12. Effect of skewness and EM bias on the GPS altimetry DCF (Fig. 10). The 
same values as those of Fig. 11 were used for the non Gaussian case. 
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Figure 13. Top: (a) plot presents comparison between GPS reflection data from space and 
model (after Lowe et al., 2002b). (b) Comparison of derivative of same and derivative of 
same model data (only points on leading edge).  The zero on the abscissa axis in 13.a is 
estimated based on the inflection point and corresponds to the specular reflection point.  
Points spacing in the model derivative is much smaller than available data. 
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(a) 

 
(b) 

Fig. 14: (a) L1 range errors after 4 second of incoherent averaging.  A Doppler filter is 
used to maintain a maximum footprint size of 50 km (in the incident plane).  (b) Same as 
in (a) but for the approach where the footprint size is set by the first iso-range ellipse. 
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Fig 15: Range accuracy for the case when the LEO velocity is normal to the incidence 

plane. 
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Fig. 16: Ocean height error(1-σ) for a 100×100 km2 area after 10 days of observations 
with 12 LEO satellites for a 18 dB reflection antenna gain.  The solid curves correspond 
the error that would be obtained if the antenna HPBW was only 1o and pointing in the θ 
direction with a full azimuthal view.  The dotted lines correspond to the situation when 
pointing down toward nadir with a field of view up to θ.  The dashed lines correspond to 
the situation when pointing toward the limb with a field of view down to θ. 
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Fig. 17: The scale of the ocean wave heights defining the onset of incoherent scattering 
based on the Rayleigh criterion 
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Table 1: Examples of different antenna field-of-views and the corresponding average 
number of simultaneously visible GPS satellites. The maximum usable θ for a receiver at 
700 km altitude is ~64.3o which corresponds to the Earth’s limb (ε = 0). 
Example 1: A 90o HPBW 
pointing toward nadir 

Example 2: A 120o HPBW 
pointing toward nadir 

Example 3: Doughnut shaped 
antenna beam pointing close to 
the Earth’s limb 

θ = 0o θ = 0o θ = 50o 
θ+∆θ = 45o 

(corresponding ε=45o) 
θ+∆θ = 60o  
(corresponding ε=15o) 

θ+∆θ = 64.2o (corresponding 
ε=2.2o.) 

Θ = 0o Θ = 0o Θ = 54.5o 
Θ+∆Θ = 47.4o Θ+∆Θ = 74.5o Θ+∆Θ = 97.3o 
NGPS = 3.9 NGPS = 8.8 NGPS = 8.5 
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Table 2: Resolution and corresponding accuracy obtained after 1, 4 and 8 days of 
averaging from a GPS receiver in LEO with about 23 dB antenna gain. Two cases are 
shown: single LEO with GPS, and 8-LEO constellation with GPS+ GALILEO. 

 Ocean height error, cm 
1 LEO, GPS tracking only 

Ocean height error, cm 
8 LEOs, GPS+ GALILEO tracking 

scale, km 1 day 
average 

4 days 
average 

8 days 
average 

1 day 
average 

4 days 
average 

8 days 
average 

25  76 54 38 19 13 
100 38 19 13 10 5 3 
200 19 10 7 5 2 2 
400 10 5 3 2 1 1 

1000 4 2 1 1 <1 <1 
 
 


